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ABSTRACT

Recently M. G. Crandall and P. L. Lions introduced the notion of

'viscosity solutions' of scalar nonlinear first order partial differential

equations. Viscosity solutions need not be differentiable anywhere and thus

are not sensitive to the classical problem of the crossing of characteristics.

The value of this concept is established by the fact that very general

existence, uniqueness and continuous dependence results hold for viscosity

solutions of many problems arising in fields of application. The notion of a

"viscosity solution" admits several equivalent formulations. Here we look

more closely at two of these equivalent criteria and exhibit their virtues by

both proving several new facts and reproving various known results in a

simpler manner. Moreover, by forsaking technical generality we hereby provide

a more congenial introduction to this subject than the original paper.
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SOME PROPERTIES OF VISCOSITY SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS

1. G. Crandall, L. C. Evans and P. L. Lions

Introduction

Recently two of us (see (2], [3]) defined a class of generalized

solutions of nonlinear scalar partial differential equations of the form

(0.1) F(y,u(y),Du(y)) - 0 for y e 0 ,

where 0 is an open set in e , F 0 x R x + R is continuous and

Du I ,... , - denotes the gradient of u. These generalized solutions -

1 m

called viscosity solutions in (2] - need not be differentiable anywhere, as

the only regularity required in the definition is continuity. M. G. Crandall

and P. L. Lions ([2]) utilized this new concept to establish uniqueness,

stability, and certain existence theorems for a wide class of equations of the

form (0.1). In addition, P. L. Lions in [81 has extended these techniques to

obtain further and more general existence results.

Our goal here is first to look more closely at two alternative

definitions of solutions of (0.1), each of which was proved equivalent to the

Oviscosityu notion in (2], and second to present ume now properties of theme

solutions. Although these alternative definitions were mentioned in (2j, they

were not used there. Here we emphasize that they are more appealing in same

respects and more convenient for certain purposes than the one taken as basic

in (21 (see, e.g., Evans (61, which stimulated the current work). In
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Evans was a member of the Institute for Physical Science and Technology,
University of Maryland.
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particular, choosing appropriately each time one of these equivalent notions

w can soplify the proofs of several results given in 2. Furthermore, the

concept of viscosity solutions is closely related to some previous work by L.

C. Evans [5]. We should also point out that this paper is essentially self-

contained and makes easier reading than [21, as we forsake generality here.

Let us first formulate the definition of viscosity solutions in the form

we think the most appealing (even if not always the most convenient to use).

We begin by recalling that a runction u from 0 into a is said to be

differentiable at y0 e 0, and that Du(y0) p p 0 e P, if we have

(0.2) u(y) - u(yO ) + p 0 (y-yo) + o(Iy-yo) •

Here a.b is the Euclidean scalar product of a and b, and g(y) -

o(Iy-yO1) means

lin g(y)ly-yo -1 - 0

Obviously (0.2) is the conjunction of the two relations

(0.3) lb. sup (u(y) - u(y O) - Po(Y-y0 )) Iy-yo 1  0

and

(0.4) lim inf (uly) - u(Yol - Po.(y-yo)) ly-Yo - 1 ) 0

It is well-known that if u is continuous, it may fail to be differentiable

at every y 0 a 0. Nevertheless, there are - as we will see below - many

choices of (y0 1P0 ) 6 0 x n for which (0.3) or (0.4) holds. It will thus be

convenient to give the following definitions

Definitions Let u be a function from 0 into R and let y0 e 0. Then

the ouverdifferential of u at y0  is the set, denoted by D +u(y 0 ), of p

e jP such that (0.3) holds. Similarly the subdifferential of u at y0  is

the set, denoted by Du(y0 ), of P0 6 IP such that (0.4) holds.

-2-



in general, D :k y 0  are closed and convex sets. There is an obvious

relation between our "subdifferential" and the notion used in convex

analysis. We have also learned that the subdifferentials used here vre

previously employed by B. DeGiorgi, A. Marino, and M. Tosques in another

context in (4]. We may now define the concept of viscosity solution of (0.1)s

Definition Is a viscosity solution of

(0.1) F(y,u(y),Du(y)) -0 in 0

is a function u 6 C(0) satisfying

*(0.5) F(Y,u(Y),P) 4 0 Vy e 0, Vp e Du u(y),

* and

*(0.6) F(y,u(y),p) )' 0 vy 6 0, vp 6 D u~y)

in a similar vay u e C(0) is said to be a viscosity subsolution (resp.

* supersolution) of (0.1) if (0.5) (resp. (0.6)) holds.

We will reprove in Section 1 that this is equivalent to the following

notion of solution of (0.1):

Definition 2: u G C(0) is a viscosity solution of (0.1) provided for all

*e C' (0),

(0.7) if u-# attains a local maximum at y 0 6 0, then

F(Y01u(y0 ), D#(Y0 )) 'C 0

and

(0.6) if u-# attains a local minim at y0 e 0, then

F(y01U(y0 ), D#(y0)) )' 0

Moreover, each of these notions is equivalent to the one introduced in (21

(ase section 1).

-3-



Zn Section 1 we also establish various properties of viscosity solutions,

such as, for example, the consistency with classical solutions. Section 2 is

devoted to a uniqueness result concerning equations of the type

(0.9) u + (Du) - f , x S6 n  ,

while in Section 4 we give a general uniqueness result for the initial value

problem

ut + H(Du) - 0 x e Int > 0

, 10.10)
(.){u(x,O) - u0(x) , xe B

Here Du denotes the gradient with respect to x (6 in). Of course (0.10) is

a special case of (0.1) with 0 - 3" x (0,+*), y = (x,t), a - n+1.

in Section 3 we show that the well-known vanishing viscosity method

yields viscosity solutions, and finally in Section 5 we consider the relations

between viscosity solutions of (0.10) and nonlinear semigroup theory.

Let us recall that many of the results presented here have been already

proved in [21, but the proofs herein seem to be simpler (essentially due to

our freedom in choosing among the equivalent definitions of viscosity

solution). since the main point here is simplicity, we will not consider more

general Hamiltonians H than in (0.9) or (0.10). Technical generality

(e.g., H(xtuDu) in (0.10)) is available In [2].

-4-
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1. Main Proverties of ViscositY 8olutions.

1.1 Equivalent definitions

Theorem 1.1: Let u 6 C(O). Then the following are equivalents

(i) u satisfies (0.5) and (0.6),

(ii) u satisfies (0.7) and (0.8) for all 6 C1 (0),

(iii) u satisfies, for all e 6 Cc(0) ( * , * M 0, and k e R,

{ if max *(u-k) > 0, then for some point y0  at which #(u-k)
0

attains its maximum, we have F(oU) (yotuyOoD( ) Muy O 0 W) 0

and

if min 0(u-k) < 0, then for some point y0 at which *(u-k)
0

( 1.2) laD#(y0)

attains its minimum, we have F(y0 ,u(y0 ), -(y0) (u(y0 ) - k)) ) 0

Remark 1.1: It is easy to prove that in (ii) or (iii) we may replace

# e C 1(0) by * e C(0). (See the proof of Theorem 3.1.)

Remark 1.2: Property (iii) is the original definition of viscosity solutions

given in [2] (where the equivalence of (i), (ii), (iii) is also proved).

Remark 1.3: A more precise statement than Th. 1.1 asserts the equivalence of

i) u satisfies (0.5), 1i) u satisfies (0.7) and iii) u satisfies (1.1). An

analogous statement holds for supersolutions.

M C1(0) - {* 6 C1(0), the support of * is a compact subset of 0).
c

-5-
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SRemark 1.4: Let us finally mention that we could define the notion of

viscosity subsolutions for upper semi-continuous functions and most of the

results of (2] would still remain valid.

We will prove (i) <-> (ii). For the equivalence with (iii), see [2].

That i) <m> (ii) is an immediate consequence of the following

Proposition 1.1: Let u e c(O), Y0 e 0, p e iP, then the following are

equivalent:

(i) p 6 Du(y0 ) (reap. p e D'u(y 0 ))

and

(ii) there exists a C(0) such that u-# has a local maximum (resp.

minimum) at Y0 and D(y 0 ) = p.

Proof. The key fact is the following form [2, Lemma 1.4] of a result of [4]:

Lemma 1.1: Let n 6 C(0) be differentiable at y0 e 0. Then there exists

V e c1(0) such that DY+(y0 ) - DY_(y 0 ) - Dn(y 0 ) and n-T (Ti-1-) has a

strict local maximum (reap. minimum) value of zero at y0 .

Accepting this lemma, we prove Proposition 1.1. Assume p e D u(YO ).

Set 1(y) - (u(y) - u(y0) - pe(y-y 0)}
+ , where r +  denotes max(r,O). By

assumption Ti is differentiable at y0  and Dn(y0) - 0. Let Y+ e c1(0) be

as in Lemma 1.2. Then near yo

{u(y) - u(y0 ) + p(y-yo - Y+(y) 0

so if #(y) - u(y0 ) + po(y-yo) + T+ (y), u-# has a local maximum at yo and

D#(y0 ) = p. Thus (ii) implies (i). It is clear that i) implies (ii), since

if u-# has a maximum at y0, then near y0  we have

u(y) 4 u(yO ) - (yo) + *(y) 4 U(y0 ) + DO(y0 ).(y-y 0 ) + o(ly-Y0 1)

This implies D(y 0) D +u(y 0 ). (We have dealt with D+  and local maximal

the situation for D- and local minima is entirely the same.)

3

-6-
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1.2 Elementary properties of viscosity solutions.

we begin with a simple result which establishes the consistency

of the notions of viscosity and classical solutions.

Theorem 1 .2:

(i) Let u e c1 (0) be a classical solution of (0.1), that is

F(y,u(y),Du(y)) - 0 in 0, u C 1(0)

Then u is a viscosity solution.

(ii) Let u be a viscosity solution of (0.1) which is differentiable at

some YO 6 0. Then

F(y0 ,u(y0 ),Du(y0)) - 0

Remark 1.6: This result is proved in [2] (Corollary 1.6). Analogous

statements hold for viscosity sub and supersolutions. Obviously we deduce

from (ii) above that if u is a viscosity solution of (0.1) and if

1u e W1 p(0) for p > m, then
loc

F(y,uDu) - 0 a.e. in 0

The proof of Theorem 1.2 is trivial, since if u is C1, then at every

point y e 0, the super- and the subdifferentials coincide and

Du(y) - D-u(y) - {Du(y)} .

In the same way, if u is a viscosity solution of (0.1) and is differentiable

at y e 0, then D+u(y 0 ) - D-u(y0 ) - {Du(y0 )}.
0

We next reprove Theorem 1.10 of [2], which characterizes piecewise C1

viscosity solutions of F 0. Let 0 be divided in two open subsets 0+,

0_ by a CI surface r o -io 00 u r. The unit normal to r at

Ye e r is denoted by n(y0 ) and is taken to point into 0+ .

Theorem 1.3s Let u e C(0) and u - u+ in 0+ u r, u - u- in 0_ u F

where u+, u_ are of class C1  in 0+ u F, and 0. r. Then u is a

viscosity solution of (0.1) if and only if the following conditions holds

-7-



(a) u+ and u. are classical solutions of F - 0 in 0+ and 0.

reapectively,

and

(b) if y0 a r, Ty0 - e Y: n(Y0 )- - 0) is the tangent space to r

at y0  and PT is the orthogonal projection of I3 onto Ty0, then

if a - Du+(y0 )*n(y0) Du_(y0 )on(y0 ) - b, we have

(1.6) { L 0 uy)PD
F(YoU(Yo),PTDut(yo) + En(yO)) 0 0 for a 4 E C b

and

(if a - Du+(yo)n(y o ) )Du- (y 0 )n(y O) 0 b, we have

(1.7)
(F(you(yo),PTDu(yo) + En(yO)) ;0 0 for b 4 E • a

Proof: First note that the assumptions imply that PTDu+(yo) - PTDU_(y0 )

for Y0 e r, whence PTDu (yo) is unambiguous. Now, by assumption, if

y e 0+ u 0, then D +u(y) - D'u(y) - {Du(y))i therefore (a) is equivalent to

the satisfaction of (0.5) and (0.6) for y e 0\F.

We are now going to prove that (b) is equivalent to (0.5) and (0.6) for

y e r. In order to do so, we just need to compute D +u(Y0 ), D-u(y0 ) for

YO • r. By assumption we have

(1.8) u(y) - u(y 0 ) + PTDu+(yo).(Y-yo) + (n(y 0 )-Du+(y 0 )) (n(y 0 )-(y-y 0 ))

+ o(ly-y 0 1) if y e0+U r r

and

(1.9) u(y) - u(y O ) + PTDu_(yO)*(y-yo) + (n(yo)*Du (yo))*

S(n(yO)*(y-yo)) + o(ly-yOl) if y e ou r

On the other hand p e D+u(yo) if and only if

(1.10) u(y) C u(yO ) + p*(y-yo) + o(ly-yo1)

-u(y O ) + PTp.(y-yo) + (n(yo)*p)(n(YO)*(y-yo)) +

+ o(y-Yo)•



Recalling that PTDu+(Yo) - PTDU_Y 0 ) and that r is of class C , one

deduces immediately that p e D+u(y0 ) if and only if

(1.11) PTp - PTDu±(yO) and n(y0 )eDu+(y0 ) 4 n(y0 )Gp 4 n(yo)*Du_(y0 )

Thus

(1.12) D+u(y0 ) {PTDu±(Yo) + tn(yo): n(yo)*Du+(y0 ) g C n(y0 )ODu (y0)}

(and if n(y0 )ODu+(y0) > n(y0 l)Du_(y0 ), D+u(y0) is empty.)

In the same way, we find:

(1.13) D-u(y0 ) - (PTDU,(y0 ) + gn(yo): n(y0)oDu_(y 0 ) C C n(y0 )*Du+(y0)1

It is then straightforward to complete the proof of Theorem 1.3.

0

Remark 1.7: It is worth noting that by the use of Definition I of viscosity

solutions the above proof of Theorem 1.3 is more direct than in [2]. This

phenomenon is further illustrated by two easy results (the first is Corollary

1.8 and the second in Thin. 1.2 of [21).

Proposition 1.3: Let u be a viscosity solution of (0.1) and let * e c1 (R)

be such that 0'(t) > 0 in R, f(R) - R. Then O(u) is a viscosity solution

of F(x,Y(v),T'(v)Dv) - 0, where T denotes 4-

Proof: This is immediate from the observations

D +(f(u)(y 0)1 = 0'(U + y0)
D+{0u)(0 ) = u(y0 ))D u(y0),

-{0 (u)(y 0 )} = *'(uY 0))D-u(y0)

0

Proposition 1.4:

(a) Let u,v be viscosity subsolutions (reap. supersolutions) of (0.1).

Then w - max(u,v) (resp. w = min(u,v)) is a viscosity subsolution

(resp. supersolution) of (0.1).

(b) Let (u n) n be viscosity subsolutions (reap. supersolutions) of (0.1).

If W - sup un (resp., inf u ) e C(O), then w is a viscosity sub-
n)1 n

solution (reap. supersolution) of (0.1).

-9-
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Proof& The proof of (a) is an immediate consequence of the remark

D+(max(u'v1Y(0) C D +u(y0 ) U D+v(Y0 )

(reap. D-{min(u,v)}(y 0 ) c D-u(y 0 ) U D-v(y 0)). And (b) is a consequence of

(a) and of the following stability result. Observe that w = sup um n
m)n)1

converges uniformly on compact sets of 0 to w, because of Dini's lemma.

Theorem 1.4: Let Fn(y,t,P) be a sequence of continuous functions such

that Fn(y,t,p) converges uniformly on compact subsets of 0 x R x Rm to some

function F(y,t,p). Let un be a viscosity solution of Fn(y,un,Dun) = 0

in 0. We assume that un converges uniformly on compact subsets of 0 to

some u. Then u is a viscosity solution of F(y,u,Du) - 0.

Proof. By Theorem 1.1, we need only to consider points of local maximum of

u-t for t e C (0). Let y0 be such a point and let us prove that

(0.7) F(y0,u(y0 ),Dt(y 0)) 4 0

Take Y e C (0) such that 0 4 T < I if y Y0 and ly 0 ) 1. It is

clear that u - (4-T) attains a local strict maximum at y0  and thus for

n large enough, there will exist yn such that

un - ( -Y) attains a local maximum at y ,

Yn e 0, and Yn + Y0

By assumption, we have

F n(ynu n(Y n), D#(y n ) - DY(yn)) 4 0

and we conclude since u n(Y) + u(y0 ) and D$(y) - DfYn) + D (y0) -

DY(yo) D(yo)-
0

Remark 1.8: The proof above actually shows that if u + u in C(O), thenn

for all p e D +u(y0 ) (resp. D-u(y0 )) there exist Yn e 0,

e D+un(yn) (resp. D- un(yn)) such that yn + Y0' Pn + 
p . In other

words

-10-
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2. Uniaueness for u + HDU) f in 1P.

we now consider the uniquenes of viscosity solutions of

(2.1) u + B(Du) - f in 3n

Of course, (2.1) is a very special case of (0.1)t take a - n, y - x,

F(y,tp) - t + H(p) - f(y). We will prove the following

Theorem 2.1: Let u, v, f, g, H e C(3n). Assume that u, v are bounded

and f, g are uniformly continuous on In . AssuM that u and v are

viscosity solutions of, respectively, u + H(Du) - f, v + H(Dv) - g in 3 n .

Then we have

(2.2) sup (u-v)+ ( sup (f-g)

Rn sn

Remark 2.1: By symmetry, we also have

sup (v-u) + 4 sup (9-f)+
nn

and thus Iu-vI C If-gl, where Ihi - sup jh(x)J is the norm on the space

Cb(3P) of bounded continuous functions on 10.

Proof of Theorem 2.1: We begin the proof by assuming the extra conditions

(2.3) lim u(x) - lim v(x) - 0
Ixl+ IxIM

This will keep the ideas clearer; later the full result is established.

We choose a function 9 e C (Rn ) with the properties

(2.4) 0 4 0 4 1, 0(0) - 10 O(x) - 0 if lxi > 1

Let N max(lullvl), C > 0, and let * t Rn x R + R. be given by

(2.5) *(xy) - u(x) - v(y) + 3M (x-y) ,

where

(2.6) 0 () 0 (), for s e Rn

-12-
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By (2.3) - (2.6) and the choice of 0,, lia sup *(x,y) ( 3K. In fact, off
• ixli+lylI -

the support of B,(x-y), * C 21 vhile if IxI + lyl + - on this support,

then lxI and lYI 4 *. We may assume that

u(x) > v(x) for some x, since (2.2) clearly holds if this is not the

case. But then

*(x,x) - u(x) - v(x) + 3M10C (0) > 3M

Therefore # assumes its maximi- value at some point (xo,YO ) 6 IP X Eel

i.e.

(2.7) #(x0 ,Y0) " u(x 0 ) - v(y0 ) + 3M e(X0-Y0 ) u(x) - v(y) +

+ 3140 e(x-y) for all (x,y) 6 Ir X n

Moreover, Ix 0 -Y 0 1 4 C since BC(x 0 -Y0 ) > 0 by the above.

Now x0 is a maximum point of x H u(x) - (v(y0) - 3M08(x-yO)) and

thus, by assumption,

(2.8) u(x0 ) + H(-3M(D06 )(x0 -Y0 )) 4 f(x0)

Similarly, y0  is a minimum point of y ' v(y) - (u(x 0 ) + 31m0,(x0-y)) and so

(2.9) v(y 0 ) + H(-3M(DB )(x 0 -Y0 )) g 9(y 0 )

Together (2.8) and (2.9) yield

(2.10) u(x0) - v(y0 ) 4 f(x0) -g(y0

For x e nP

u(x) - v(x) + 3M - O(x,x) C *(x01y0) • u(x0 ) -v(y ) + 3K

so, by (2.10),

sup(u(x)-v(x))+ 4 (u(x 0)-v(Y 0+ (f(x 0)-g(y0+

Sup(f-g) + + g(x 0 )-g(y 0 )1

Rn

C sup(f-g)+ + W (C),

-1',-
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where w(0) is the modulus of continuity of g. Nov (2.2) follows upon our

letting C * 0.

The extra assumption (2.3) was used to guarantee that * had a global

maximm point (x01y0 ). To treat the general case, choose > > 0 and then

(xly 1 ) so that

(2.11) *(xlY 1 ) ) sup *(x,y) - 6

nann

Nov choose e C7( n x 1n ) such that

{O.1 1, (xl,Y1 ) - 1, C(x,y) - 0 if Ix-Xl12 + ly-y112 >1

(2.12) 2 in EPxBi .

Finally set

(2.13) Y(xy) - *(xy) + 26C(xy) - u(x)-v(y) + 3mO (x-y) + 26C(xy)

We claim that Y has a global maximum point (x0 y0 ) 6 an x 3n Indeed, from

(2.11) one deduces

Y(xly 1 ) " *(x 1 y1 ) + 26 * sup * + 6

whereas

lia sup T(x,y) 4 sup ,-xI+IyI
Moreover, with x, (xO,Y0 ) as above,

u(x0 )-v(y0 ) + 3M0 (x0 -Y0 ) + 26C(x 0 "y0 ) ) u(x):v(x) + 3M + 28C(x,x)"

whence

2M + 3Mi (x 0- y O ) + 2 6 > 3M

We conclude that

(2.14) Ix0-Yo1 4 C if M > 26

Next, using the assumptions on u, v as above, one deduces

u(x0) + H(-3NDB (x0-y0 ) 2 6D x(x0,Y0)) ( f(x 0 )

and

-14-
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v(y0 ) + H(-3HDat(xo-y0 ) + 26DyC(X 0 ,Y0 )) g(y 0 )

These imply

(2.15) u(x0 )-v(y0 ) 4 f(x0 )-g(y0 ) + w (8)

where 0 denotes the modulus of continuity of H onHer
( IeR'u Il < r) and r - 3Dgtl + 8 •

Therefore for x 6 RP, we deduce

u(x)-v(x) + 3M 4 u(x)-v(x) + 3M + 286(xx) - (xx) C

I Y(x0 1Yo) C U(x0 )-v(yo) + 3M + 26

sup (f-g)+ + w(c) + 0,r(86) 2+3g H

We conclude upon sending 6 4. 0 and then s . 0.

Remark 2.2 I It is worth noting that the essential ingredients of the above

proofs are, in fact, general results on the semiLdifferentials of

u,v e Cb(Rn). indeed, we actually proved the following in the course of proof

of Theorem 2 .1s

Proposition 2.1. Let u,v a C(EP).

(a) If u, v satisfy (2.3) and sup (u-v) >0, then for each > 0 there

.1 n
exist x,,y0 6 Rn  satisfying ( )

(.)u(x 0 )-v(y 0 ) ) sup (u-v),1xo-yo1 4 y
~~(2.16) n

and D u(x 0 ) n D'v(y0 ) is not empty

(b) Let u,v 6 Cb(3 n ) and sup(u-v) > 0. Lot N max(JulIvI). Than there

is a constant K > 0, independent of u and v, such that for 0 < Y,

1 C 1 there are x0,y0 6 a satisfying

d -15-



M Ixool < and u(Xo)-v(yo ) ) p(auv) - ,

(2.17) (ii) there exiSt p 6 D+u(x0 ), q 6 D v(y O)

satisfying Ipl, IqI ( Y + A) and Ip-qi YAK

1

Of course, if u,v 6 Cl(SP) in case (a) and if x0  is a maxud m point

of h - u-v, then x0 - yo solves (2.16) with Y - 0. The C1 version of

(2.17) is that if h e 1( ) n Cb(R), then one can solve h(x0 ) ) sup h -

1Dh(x 0 )I < Y for each Y > 0. The uniqueness result Theorem 2.1 is an easy

consequence of Proposition 2.1. For example, if u,v satisfy (2.3) and are

viscosity solutions of u + H(Du) - f and v + H(Dv) - g respectively, we

then deduce

u(x0 ) + H(p) 4 f(X0 ), v(yO ) + H(p) ) g(yo
)

where x0, Y0  are as in (2.16) and p is the common element of D ulx0)

and D-v(y0 ). Thus

sup(u-v) 4 f(x0) - g(y0)n

C sup (f-g) + w (Y)

and we conclude by letting Y + 0.

The point of these remarks is that proofs of facts about viscosity

solutions can in fact be regarded a applications of general results

concerning the generalized calculus of the semidifferentials O+, D to

problems at hand.

-16-
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3. Existence of Viscosity Solutions.

To demonstrate the existence of viscosity solutions (and also explain the

name of these solutions) we quickly reprove the following

Theorem 3.1: Let e > 0, and let F7(y,t,p) be a family of continuous

functions such that F e(y,t,p) converges uniformly on compact subsets of

0 x R x Nm to some function F(y,t,p), as e goes to 0. Finally, suppose

u e c2 (0) is a solution of

-eAuC + F Cy,ue, Du - 0 in 0
C

and let us assume that the u converge uniformly on compact subsets of 0

to some u e c(0). Then u is a viscosity solution of (0.1).

Remark 3.1: This result is proved in (2] (Proposition IV.1).

Proof of Theorem 3.1: Let us check (0.7) first for # c 2(0). Assuming that

u-# has a local maximum at y0 e 0, choose c e Cm(0) such that

0 ( C < 1 if y 0 YO, C(yo) - 1. Obviously u - (#-C) has a strict local

maximum at yo e 0 and thus for C small enough, u - (*-C) has a local

mxum at some y. e 0 and ye e+0 y0 . But at the point y - y., we have

DuCly) ( D(-C)(y ), Au ly ) e A(*-Clly ) i
therefore

F (y,ue (y ), DI*-C)(y)) ( • CM:

We may conclude since ue (y) + u(y0 ), D(W-C)(y) + D(W-)(y0) -D 0

CA(#-C)(yC) + 0. Now, if e c 1 (0) and if (u-#) has a local maximum

at y0 e 0, let us then prove (0.7). Take n 6 C2 (0) such that # n

in CI(0) and, as before, choose C e c(0) such that 0 C C < I if

Y 0 Y0, C(y0 ) 1. For n large enough, u - (n-) has a local maxima at

some point Yn e 0 and y n + y0  By the argument made above, we know

F(ynu(ynl D~nYn) - DC(yn)) 4 0

-17-
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We finish by noting D# (yn ) - DC( O D(y) - DVYO) -D(yo).

As an illustration of the above result, we prove

Corollary 3.1: Assume H : RP + it is continuous, A > 0. Then for each

f 6 BUC(En) (Y ) - X there exists a unique viscosity solution of u 6 X of

u + %H(Du) - f(x) in 3'P. Let us denote this solution by u - Rf. Then for

all fg 6 BUC(RP), we have

(3.1) I(Rlf-Rjg)+I C I(f-g)+l

Proof: The uniqueness and the estimate (3.1) ar mmediate consequenoes of

Theorem 2.1. To prove the existence, we consider the approximate problem

(3.2) uC + XH(Du ) - Au -f 9 in I?
where Htf e C7(Rn) and H 0 H in C(Re), f6  f in

6 6+0 C+O bj)

Routine P.D.B. arguments imply the existence of a unique smooth solution

u e DUC( nP) (see for example (7], (2], (81). In addition if v 6 X solves

v, + AN(Dv) - CAv€ - g in ,

the maximum principle yields

(3.3) lu -v1 4 If -ge I

If we take W g f(x) -f(x+y) for some fixed y e 6 n , we obtain

sup u C(x)-u (x+y)l 4 If -g E that is,Rn

(3.4) mg(O) 4 Nf¢(,)

Thus the set {u is bounded in Cb(lP) and equLcontinuous, and there

exists a * 0 and u 6 X such that u C J u locally uniformly. Nov recall

Theorem 3.1.

0

Remark 3.1: For more general existence results, we refer to P. L. Lions (8].

BUC(3 n) - {u 6 %("), u is uniformly continuous on 3P).

-18-



As a final result in this section, we obtain an estimate on a bounded

viscosity solution u of

(3.5) U + H(Du) 4 f

under the assumption

(3.6) IH(p)l 4 LjpI, p 6 3n

(3.7) lf(x)l 4 ae bizi, x 6 Rn

whore Le a, b are nonnegative constants. Set

(3.8) V(X) -ce dx

where c, d > *. Clearly

(3.9) D v(x) - XI

(empty if x 0

Thus v is a viscosity supersolution of v + HCDv) -f provided that

(310) c-41X'1 +Hd-dlxi x
+H(-cd "f (x) for x 10

in view of (3.6) and (3.7), the estimate (3.10) is valid provided

ce-dlxi - L co dlxi )oa7bx

or, equivalently

ac(I - Ld) )o a(4b)lxl

If d 4 b and Ld 1 we conclude that v - a/(I - A)e-dlxi is a

supersolution of v + H(Dv) - f. The proof of (2.2) of Theorem 2.1 used only

that u is a subeolution and Y is a supersolutiong so we conclude that

(3.5), (3.6), (3.7) imply

(3.11) U(X) 4 -1--e -lxl for d <b,Ld 14

Compare this with the proof of (6, Lama 2.21.
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4. Uniqueness for at+ BMWu - 0.

This section and the next one concern the Hamilton-Jacobi equation

(4.1) ut+ n(Du) - 0 in En x (0,-)

with the initial condition

(4.2) u~x,O) - 110 (X, x 6 so

According to our definitions and to Theorem 1.1, u e c(an x (0,T) is a

viscosity solution of

(4.3) Ut + H(Du) 0 on A? x(0,T)

provided that, for every # e C1 (dfl X (0,T)), we have #t+ H(D#) 4 0 (resp.

)o 0) at local maxim (romp. minima) of u-#. We will prove

Theorem 4.1: Let 0 < T <( and let u,v 6 suc(311 X (0,T]) be viscosity

solutions of (4.3). Then

sup (U-v) Csup (u(x,0) - v(x,0))

2% (0,T) R

Remark 4.1: The mthod of Section 3 is easily adapted to prove that if

u0 6 DUCCEP), then (4. 1), (4.2) has a unique viscosity solution u such that

u 6 D0C(3' x [0,T]) for every 0 < T < -. This will also follow from Section

5 and nonlinear semigroup theory.

Proof of Theorem 4.*1: We will give the proof in the general case.* However,

let as first dispose of the following technicality.

Looms,4.1: Let 0 <T < " and lot a 6C(In x (0,T)) bea viscosity

I nsolution of (4.3). if # 6 C (M x (0,T]), then at each local maximum point

(reap. minimum point) of u-4 on Knx (0,TJ, we have:

*t + NO*) 4O (resp. '-s0)

Proof: The point is that assumptions on (0,T) imply conclusions on (0,T11

this is because of the special dependence of the equation on the time

derivative. For example, we prove that if (x0,T) is a local maximum in

311 X (of?) of u*with a C1 (IP x (0,T)), then

-20-
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*t(xO,T) + H(D*(x0 ,T)) 4 0. As observed many times above, we may assume

(x0 sT) is a strict local maximum of u-# on I? x (0,T. Then we choose

y,r > 0, 0 < r < T, so that

(4.4) u(x,t) - *(Xt) 4 u(x0 eT) - *(X0 eT) -

for

(4.5) (x,t) e r- ((xt) : Ix-xo1 > r and 0 4 T - t 4 r, Ix-xoI ' r)

If e > 0 is small, it is then obvious to see that *,(x,t) - u(x,t) -

#(x,t) - £(T-t)- I has a local maximum point (x,,t,) such that t. < T and

(x ,t2) ,0 (X0eT)" By assumption we then have

#t(Xelt2) + + H(D#(x ,te ) 0(T-t e

This implies

#t(x ,t,) + H(D(X 6 t£)) EI 0

and the result follows upon letting £ + 0.
0

We may now begin the proof of Theorem 4. 1, which involves the

construction of a rather complicated "test function". Define a by

(4.6) sup (U-V) - sup (u 0 (x)-v 0 (x)) + a ,

PXEO,T] I n

where here and below u0 = u(oO), v 0 M v(*,O). If a 0 0, there is nothing

to prove, and so we may assume O> 0.

Choose e e C (3 x R) so that

0 C 0 4 1, 0(0,0) - 1 and

(4.7) \P(x,t) 0 0 if xi 2 + t2 > I

-21-



set 0 (x,t) - O(I,) and M - max(lul,IvI), where IhI denotes the norm

of h in Cb(Rn x [O,T]) (note that since a > 0, 1 0). Next, lot A > 0

be fixed and define V n X Rn X [0,T] X (0,T] + R by

(4.8) *(x,y,ts) - u(x,t)-v(y,s) - X(t+s) + (5M + 2XT)0 (x-yt-s)

If * attains its maximum on n x [0,T] at some point, the proof is easily

completed, but this need not be so. Therefore we choose 6 > 0 and then

2n 2
(XofYoytos O ) e R x [0,T] so that

(4.9) *(x0 1Y0 ,t0 ,s0 ) > sup * - 8

The first claim is that if A, C and 6 are sufficiently small, then for

some P > 0

(4.10) t0 s0  ,

where U is independent of A, 6, 6. To see this, first note

O(x,y,t,s) 4 2M if Ix-y 2 + It51 2

(4.11) f 9 • sup *(x,x,T,T) > 3M

R x:[0,T] 2  n

Hence if 8< M, then Ix0-y0
2 + (t0s)2 < -2 0 Therefore for 8 < M

(x0,Y0,t0,s0 ) - u(x0,t0) - v(y0,s0) - At 0 + 0 ) + (5M + 2AT)O (x0-Y0,t0-s0)

( u(x0,t 0 ) - v(x0,t) - A(t+s) + 5K + 2AT + W (C)

( u(x0 ,0) - v(x0,0) -A v) + 5M + 2T + Mu(t + W(t

+()
v

Since on the other hand we have, in view of (4.6),

sup #(x,x,t,t) ) sup(u(x,t) - v(x,t)) + 5M -

-sup(Uo-V O ) + a + 5M,

we finally obtain

2AT + W (t0 ) + 0) (t ) + Wv(C) ) a - 6
UO0 v 0 v

Now if 6 < 0/4, C is small enough to force w (M) < 0/4, 2AT < 0/4, and
v

is chosen so that wu (4) + wv ( )/4 for 0 < u( , we conclude t0 Ai.

-22-



Similarly we obtain a 0 ; p and (4.10) is proved.

Next select C a C"(R 2 n X [0,T] 2 ) satisfying 0 4 C 4 1, C(x 0 ,y 0 ,t 0 ,s 0 ) - 1,

C- 0 if Ix-xo1 2 + Iy-yo12 + It-to12 + Is-so 12 A U2/4. We

I(xy,t,s) - #(xy,t,s) + 26C(x,y,t,s). Since Y 4 * off the support of C

and since

Y(xoyotos O) - *(X01yotoS O ) + 28 > sup * + 8

* attains it maximum at some point (xlyl,tlsl), which lies in the support

of C. Thus t 1 )0 y j/2. But (x11t1 ) e Rn x [0,T] is a maximum of

(x,t) + u(x,t) - v(y11 1 ) - A(t+s I ) + (5M + 2AT)B C(X-Ylt-s1 ) +

26C(x,y1 ,t,s1 ), so that Lemma 4.1 implies

A - (5+2AT) a- (x1-Yltl-s1 ) + 26Ct(xilylt 1sI1 ) +

+ H(-(5N+2AT)Dxe (x1-y11 tl-s 1 ) + 26D x(xly1 tls 1 )) 4 0

Similarly,

-A - (SN+2AT) -C(x-Y1, + 3tl(x
+ H(-(5M+2AT)D xC (x1-Y, t1-S1) + 26D y(Xy 1,3) 0

Combining these two inequalities and letting 6 + 0, we derive A - 0, a

contradiction.
0

Remark 4.2: The assumption u,v e BUC(Rn X [0,T]) was used in the proof, but

minor modifications allow one to weaken this to u0 ,v 0 e BUC(Rn),

u(x,t) + u 0(x), v(x,t) + v0 (x) uniformly on Rn as t + 0.

Remark 4.3: Theorem 4.1 is a special case of [2, Theorem V.2]. The proof in

[2) is, however, only indicated and involves a more cumbersome comparison.

See (2, Section V.31 concerning domains of dependence.

_ -23-
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5. The semiqroup Approach.

Let H e C(3n ), and X - BUC(Rn). We now realize the formal expression

"H(Du)w as a nonlinear operator on X:

Definition: We say that u e X belongs to D(A) (the domain of A) if u is

a viscosity solution of

H(Du) - f in In

for some f e x. We denote by Au the set of all such f e x.

Obviously D(A) D (u e X, Du e xI (because of the consistency result

Theorem 1.2) and so D(A) - X.

Remark 5.1: Except in very special cases we do not know whether A is single

valued. (See L. C. Evans [6] when H is uniformly continuous on 1n; the

case when H(p) + as Ip[ + - is easily deduced from the results of M. G.

Crandall and P. L. Lions [2].) For simplicity, we write as if A were single

valued below.

Proposition 5.1: A is an m-accretive operator on X.

Remark 5.2: See P. Benilan, K. G. Crandall, A. Pazy [1] or L. C. Evans [5,

appendix 1] for definitions.

Proof of Proposition 5.1: In view of Corollary 3.1 we have R(I + AA) = X

(for X > 0) and by (3.1)

lu-vE - Eu-v + X(Au-Av)I

if A > 0, u,v e D(A).

Proposition 5.1 implies by the Crandall-Liggett generation theorem (cf.

Ell) that A generates a nonlinear semigroup of contractions (S(t))t 0  on

X and

(5.1) S(t)u0 -lim (I+XA)'nu0  , u0 e X D(A) ,

nA+t

j _-24-
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uniformly for t in bounded subsets of (0,m). Furthermore, the mapping

t o S(t)u 0  is continuous from [0,00) into X.

In general the semigroup generated by a (nonlinear) m-accretive

operator A can be regarded as a "mild" solution of the evolution equation

duFt+ Au - 0 (t > 0) , u(0) M u0

see the forthcoming book of P. Benilan, M. G. Crandall and A. Pazy (I]. For

the case at hand a stronger interpretation is possible:

Proposition 5.2: Assume u0 e x. Then

u(x,t) - (S(t)u )(x) 0 4 t 4 T, x e jn

is the viscosity solution of (4.1), (4.2)

i n
Proof: Assume f e C (R x (0,T)) and u - * attains a local maximum at

x 0,t ) e Rn x (0,T). We may as well assume (x0,t0 ) is a strict local

maximum of u - * in view of arguments used above.

For each £ > 0, consider the step function u t) solving

{U e (t+C) - u Et)) + Aue(t+c) - 0 t ; 0

(5.2)
uM(t) = uo  if 0 4 t 4 E

eWe may assume to $ Ic for any integer Ic. Since u Ct) S(t)u0 uiorl

on [0,T] in X as e + 0, u (x,t+c) - *(xt) has a local maximum at some

point (x ,t), such that (x ,t) e Rn x (0,T), xe + 0 0 t 6 t0  Hence

(5.3) Au (t+) -A# ) 0 at x ,

according to the definition of A (note u (*+e) e D(A)). Also, if C is

small enough, we have

(u (x ,t +C) _ u (x ,t )) ( x (W(x ,t ) _ *(xc,te-C))

Combining this inequality with (5.3) we deduce

A+(x ,t ) H(D#(x ,t )) -i(M(x ,t6-C) - *(x ,te))

C
If we let C + 0, then, since (x ,t ) + (x0,t0 ), we finally obtain

-25-



#t Noto0 + H(D#(X0 1t0 )) (0

The opposite inequality has an analogous proof should u-# attain a local

minimum at (xi 0t 1 ).

This result corresponds to (2, Section VI.31.
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